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a b s t r a c t

A key challenge in the use of simulations to determine transport properties of PEMFC catalyst layers is
the computational reconstruction of the catalyst layer microstructure. In this work, a number of different
algorithms incorporating different assumptions are used to computationally reconstruct a large num-
ber of catalyst layer microstructures. In particular, the different algorithms use a variety of methods to
account for agglomeration and distribution of carbon black spheres and ionomer. A pore scale model is
eywords:
EM fuel cell
atalyst layer
ffective transport properties
atalyst layer reconstruction
ore scale model

then used to compute effective transport properties for each microstructure. It is found that the choice of
the considered reconstruction algorithms does not have a significant effect on effective transport prop-
erties in most cases. Finally, the model assumptions which account for Knudsen diffusion are analyzed
and modified to account for non-cylindrical pore structures. When cases are run using the Derjaguin
correction for Knudsen diffusion, the obtained computational results are much closer to experimental
data.
. Introduction

Catalyst layers are critical components of fuel cells, enabling the
lectrochemical reactions which generate electrical current. In PEM
uel cells, hydrogen reacts at the anode to produce protons and
lectrons, while at the cathode oxygen combines with protons and
lectrons to produce water. The catalyst layers are a composite con-
isting of a number of different materials: platinum nanoparticles
hich serve as catalysts for electrochemical reactions, carbon black
hich serves as a path for electron conduction, ionomer (Nafion is

ommonly used) which allows for proton conduction and pores
hich serve as transport pathways for reactant and product gases.

he cathode catalyst layer in PEM fuel cells is of particular interest
ecause its activation polarization is much higher than the anode
ue to sluggish electrode kinetics and flooding which commonly
ccurs at high current densities [1].
The main issues with PEMFC catalyst layers are high cost, degra-
ation, and poor catalyst utilization. Catalyst layers are expensive
ue to the high cost of platinum, which is used as the catalyst
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for electrochemical reactions. In addition, there are deleterious
electrochemical reactions that can occur, leading to platinum dis-
solution, carbon corrosion and membrane degradation [2]. Finally,
fuel cells often experience reduced performance due to poor cata-
lyst utilization. This happens when electrochemical reaction sites
are not easily accessible to reactants or when the catalyst is not
optimally distributed throughout the electrode. One of the diffi-
culties with addressing and understanding these issues in catalyst
layers is that due to the small thickness (∼10 �m) and relevant
length scales (nm), experimental measurements are very diffi-
cult. Thus, computational simulations are an attractive option for
obtaining a greater understanding of issues in PEMFC catalyst
layers. Such simulations can in addition, provide valuable data
to macroscopic fuel cell models, which often require the spec-
ification of effective transport parameters through the catalyst
layer.

Pore scale modeling of PEM fuel cell catalyst layers is a two step
process. The first step is to computationally reconstruct the porous
multiphase microstructure of the catalyst layer. Once this step has
been completed, equations describing gas transport, charged par-
ticle conduction, heat transfer, and electrochemical reactions can
be discretized and numerically solved to obtain effective transport
parameters. In general, the governing equations used in most cat-

alyst layer models are similar [3–9]. However, the algorithms used
for catalyst layer reconstruction are quite different.

Some authors have reconstructed catalyst layer morphologies
by using a structured approach [3] or a purely random approach

dx.doi.org/10.1016/j.jpowsour.2011.11.001
http://www.sciencedirect.com/science/journal/03787753
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Nomenclature

1x value is 1 at x and 0 elsewhere
a relative humidity
c1 membrane conductivity curve fit coefficient

(S cm−1)
c2 membrane conductivity curve fit coefficient (T−1)
c3 membrane conductivity curve fit coefficient (T−2)
c4 membrane conductivity curve fit coefficient (T−3)
c5 membrane conductivity curve fit coefficient (T−4)
c6 membrane conductivity curve fit coefficient

(S cm−1)
c gas concentration (mol m−3)
D diffusivity (cm2 s−1)
Erev

c Activation energy (kJ mol−1)
F Faraday’s constant (C mol−1)
g2 variable value at boundary 2
g1 variable value at boundary 1
i0 exchange current density (A cm−2)
i∗0 reference exchange current density (A cm−2)
k thermal conductivity (W cm−1 K)
l length of the computational domain (m)
lcath thickness of the cathode catalyst layer (m)
M general transport property
m mass in the domain (mg)
nd electro-osmotic drag coefficient
nPt total number of platinum particles in domain
p pressure (Pa)
p1 saturation pressure curve fit coefficient (Pa)
p2 saturation pressure curve fit coefficient (Pa K−1)
p3 saturation pressure curve fit coefficient (Pa K−2)
p4 saturation pressure curve fit coefficient (Pa K−3)
r radius (nm)
Ru universal gas constant (J mol−1 K)
S source term
T temperature (K)
y mole fraction

Greek
˛c charge transfer coefficient
� flux
� kinetic reaction order
� overpotential at reaction site (V)
� loading (mg cm−2)
� Peltier coefficient
� density (mg cm−3)
� conductivity (S cm−1)
	 potential (V)

Subscripts
cond conductive
d diffusive
e electron
eff effective
eod electro-osmotic
g generic subscript
H2O water vapor
Kn Knudsen
m membrane
N2 nitrogen
O2 oxygen
ohm ohmic heating
p proton
part particle

Pt platinum
reac reactive
sat saturation
s solid
T heat

Superscripts

* reference value

[4], where the volume fraction of each phase was specified a priori.
Catalyst layer sections have also been reconstructed as being a col-
lection of connected ionomer covered spheres which are randomly
placed with some constraints [9–11]. An alternative approach is
to use experimental data in conjunction with stochastic modeling
techniques. Mukherjee et al. [5] computed two point correlation
functions from TEM images, which, along with specified volume
fractions, then served as a basis for a stochastic mesh reconstruc-
tion. Kim and Pitsch [7] used pore size distribution data from
mercury intrusion porosimetry to try to computationally recon-
struct a microstructure which matched the experimental pore size
distribution by using the simulated annealing optimization tech-
nique. Finally, some groups have attempted to account for the
catalyst layer formation in the reconstruction algorithm. In one
case, carbon black agglomerates were “grown” from initial seed
cells, after which platinum particles were placed and ionomer was
“grown” from seed cells [8], mimicking the formation of agglom-
erates in the catalyst layer. Deterministic coarse grained molecular
dynamics simulations have also been used to model the formation
of agglomerates in a PEMFC catalyst layer [12].

There are advantages and disadvantages to using different
approaches. Purely stochastic reconstruction approaches are very
computationally efficient, but there is no guarantee that the recon-
structed morphologies are representative of actual catalyst layer
microstructures. Stochastic methods which incorporate experi-
mental data into the reconstruction algorithm might be more
physically representative, but the reconstruction procedure is more
computationally intensive and there are questions as to the validity
of many experimental methods. Any imaging technique (e.g. TEM)
used for catalyst layer characterization requires the specification
of threshold values to distinguish between solid and void spaces.
Furthermore, the resolution of these images is often quite large
compared to the relevant length scales in the catalyst layer (∼1 nm).
Mercury intrusion porosimetry can provide data about the pore
size distribution of a sample, but the process of putting a catalyst
layer sample under pressure is likely to change the interior catalyst
layer morphology. Simple algorithms which attempt to simulate
the process by which the catalyst layer is formed are computa-
tionally efficient, but more complicated approaches which account
for intermolecular forces are more computationally demanding. In
summary, there is no perfect catalyst layer reconstruction algo-
rithm.

While detailed characterization of the catalyst layer is quite dif-
ficult due to the limitations of current experimental apparatus,
engineers have nonetheless developed a number of methods to
measure the effective transport properties in PEMFC catalyst lay-
ers. A number of experimental studies have been done regarding
the effective proton conductivity in the catalyst layer [13–17] and
more recently, several groups have published data about the effec-
tive oxygen diffusivity in PEMFC catalyst layers [18,19]. As was

mentioned in a previous work [11], it is difficult to compare exper-
imental and computational data for effective proton conductivity,
because experimental data yields tortuosities that are equal to or
less than one. As this scenario is physically impossible, one can only
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onclude that there is an additional mechanism of proton transport
or thin recast ionomer films that is not accounted for in bulk mea-
urements. However, comparing computational and experimental
esults of the effective oxygen diffusivity can be used to test the
alidity of catalyst layer models.

The objectives of this work are threefold. First, this work com-
ares the results from different reconstruction algorithms that are
sed for catalyst layer simulations. A number of different algo-
ithms have been implemented in the literature [9,8], but a direct
omparison of results has not yet been made. A number of differ-
nt algorithms for distributing the ionomer and for distributing the
arbon-black particles are tested and compared in this study. While
revious works [9,11] focused on running a large number of cases
n small representative volumes, this work focuses on using larger
olumes to better account for inhomogeneities in the porous struc-
ure of the catalyst layer. Second, this work seeks to gain possible
nsights into the catalyst layer microstructure by comparing com-
utational results with experimental results. A previous study by
he authors had shown qualitative agreement but a quantitative
isagreement between computational and experimental results. A
ocus of this study is to try and determine the origin of the quan-
itative disagreement between experimental and computational
ffective diffusivity results, whether it is due to the reconstruc-
ion algorithm or due to model assumptions. Finally, based on a
ritical evaluation of the results and model assumptions, the for-
ulation for Knudsen diffusion is revisited and an improved model

hat accounts for non-cylindrical pores is implemented.
The paper is organized in the following manner. Section 2 details

he algorithms used for catalyst layer reconstruction along with
brief overview of the solution procedure for computing effec-

ive transport properties. Results are given in Section 3 while a
iscussion as to the implications of these results and possible
xplanations for discrepancies are given in Section 4. The paper
s concluded in Section 5.

. Numerical method

.1. Catalyst layer reconstruction algorithms

The general approach to catalyst layer reconstruction is to
ssume that the catalyst layer is made up of carbon black spheres,
onomer, and pores. Each cell in the computational domain is tagged
s a carbon black cell, ionomer cell or pore cell. The domain is con-
tructed to be periodic in the x-, y- and z-directions so that, for
xample, a carbon black sphere may overlap a boundary.

.1.1. Standard algorithm
This algorithm considers a stochastic approach to catalyst layer

econstruction and has been used in a number of previous works
10,9]. It requires one to input the sphere radii, the ionomer thick-
ess, the total number of spheres, the probability that a sphere will
e required to overlap with an existing sphere in the mesh and an
verlap tolerance, which specifies the maximum amount that two
pheres are allowed to overlap. The steps are as follows:

. An initial carbon black sphere center is chosen in the computa-
tional domain using a random number generator.

. A random number generator is used to determine whether or not
the next carbon black sphere is required to overlap with spheres
which are already in the computational mesh.

. A random number generator is used to generate trial sphere

centers.
(a) If the carbon black sphere is required to overlap with an

existing sphere, the following two conditions must be met
in order for a sphere center to be accepted:
ources 208 (2012) 354–365

i. The trial sphere must overlap with an existing sphere.
ii. The overlapping portion of the spheres must not exceed

the specified overlap tolerance.
(b) If the carbon black sphere is not required to overlap with an

existing sphere, the following condition must be met:
i. If the trial sphere center overlaps with any existing

spheres, the overlapping portion of the spheres must not
exceed the specified overlap tolerance.

4. Continue this process until the specified number of spheres have
been placed in the computational mesh or no more spheres can
fit in the computational mesh without exceeding the specified
overlap tolerance.

5. Loop over each cell in the computational domain. If the cell cen-
ter is within the radius of any of the carbon black spheres, tag
the cell as a carbon black cell.

6. Loop over each cell in the computational domain. If the cell cen-
ter has a distance from the sphere center which is greater than
the radius of any of the carbon black spheres but less than the
sum of the radius and the ionomer thickness for the sphere, tag
the cell as an ionomer cell.

7. Tag the remaining cells in the computational domain as pore
cells.

The platinum loading is provided as an input to the reconstruc-
tion algorithm. Thus, the total platinum mass in the domain can be
computed as:

mPt = �Ptl3

lcath
, (1)

where mPt is the total platinum mass in the domain, �Pt is the plat-
inum loading, l is the size of the computational domain, and lcath is
the thickness of the catalyst layer.

Each platinum particle is assumed to be spherical. Thus, the mass
of each individual platinum particle is computed as

mPt,part = 4
3


(rPt)
3�Pt, (2)

where mPt,part is the mass of each platinum particle, rPt is the plat-
inum particle radius, and �Pt is the density of platinum. The total
number of platinum particles is computed as

nPt = mPt

mPt,part
, (3)

where nPt is the total number of platinum particles. The platinum
particles are not computationally resolved as volume elements, but
rather are considered to exist as area elements on the exterior of the
carbon-black spheres. The platinum particles are randomly placed
at these locations.

2.1.2. Ionomer distribution algorithms
A number of different approaches can be taken to distribute the

ionomer in the catalyst layer reconstruction process. In this section,
these approaches are denoted as ionomer distribution algorithms
(IDAs). The method of ionomer distribution in the Standard Algo-
rithm is referred to as IDA0.

1. IDA1: Random Ionomer Coverage
IDA1 is different from IDA0, in that a uniform ionomer thick-

ness is not assumed. The ionomer is assumed to agglomerate at
the surface of the carbon black spheres and with other ionomer
particles. The algorithm is similar to one that was described in a
previous work [8]. It is listed as follows:

(a) Tag all carbon black cells according to Algorithm 1.
(b) Determine the number of ionomer cells to be placed in the

domain based on the previously specified ionomer volume
fraction.
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Fig. 1. Two-dimensional domain divided into 4 subdomains. The total number of
ionomer cells is 100,000, i.e., each subdomain contains 25,000 cells.

2

3

4

This algorithm is similar to IDA4, except that each subdo-
main contains a certain number of carbon-black spheres which
is determined from imposing a gradient in the number of carbon
black spheres across the domain of interest.

Fig. 3. Two-dimensional domain divided into 4 subdomains. The total number of
ionomer cells is 100,000, which means that the average number of cells for each
subdomain is 25,000 cells. However, since a 10% ionomer gradient is imposed, Sub-
domain 1 has 5% fewer cells than the average value and Subdomain 4 contains a
number of cells that is 5% greater than the average. A linear increase in the number
(c) Loop over the total number of ionomer cells to be added in
the domain.
i. Create a candidate list of cells from which the next

ionomer cell is chosen.
A. Include all cells which have not been tagged and are

adjacent to carbon black cells.
B. Include and allow for multiple counting of all cells

which are adjacent to previously tagged ionomer cells.
ii. Use a random number generator to randomly choose a cell

from the list to be specified as an ionomer cell.
(d) Tag the remaining non-ionomer cells as pore cells.

. IDA2: Random Ionomer Growth with Uniform Distribution
IDA2 is the same as IDA1, except that the domain is divided

into subdomains and each subdomain contains the same num-
ber of ionomer cells. The subdomains are created by cutting
across the midplanes of the original domain. For example, to
create eight 200 nm × 200 nm × 200 nm subdomains from the
400 nm × 400 nm × 400 nm computational domain, three cuts
are made along the middle of the x–y, y–z and x–z planes. A
two-dimensional example of this is shown in Fig. 1.

. IDA3: Random Ionomer Growth With a Normal Distribution
IDA3 is the same as IDA2, with the exception that the number

of cells in each subdomain is allocated according to a normal
distribution. The mean is computed as the total number of
ionomer cells divided by the number of subdomains. The stan-
dard deviation is given as a percentage of the mean value. A
two-dimensional example of this is shown in Fig. 2.

. IDA4: Random Ionomer Growth With a Gradient
IDA4 is the same as IDA2, except that the domain is sliced

into subdomains and the number of cells in each subdo-
main is specified such that a gradient of ionomer cells exists
across the computational domain. Since Dirichlet boundary
conditions are specified at each x–y boundary plane, the
slices are in the direction of the x–y plane. One could create
four 100 nm × 400 nm × 400 nm subdomains by making three
equidistant cuts along the z direction. The number of cells in
each domain progressively increases in a given direction, such
that for a domain with a 10% ionomer cell gradient, the number
of cells in the extreme subdomains is 5% less and 5% greater than

the mean value. Fig. 3 shows a two dimensional example of this.
Fig. 2. Two-dimensional domain divided into 4 subdomains. The total number of
ionomer cells is 100,000, which means that the mean number of ionomer cells is
25,000 cells. In this case, the standard deviation is 10% of the mean value.

2.1.3. Carbon-black sphere distribution algorithms
A number of different approaches can be taken to distribute the

carbon-black spheres in the catalyst layer reconstruction process.
In this section, these approaches are denoted as carbon-black dis-
tribution algorithms (CDAs). The method of carbon-black sphere
distribution in the Standard Algorithm is referred to as CDA0.

1. CDA1: Spatially Uniform Distribution of Carbon Black Spheres
This algorithm is similar to IDA2, except that each subdomain

contains the same number of sphere centers, and hence very
similar carbon black volume fractions.

2. CDA2: Spatially Normal Distribution of Carbon Black Spheres
This algorithm is similar to IDA3, except that each subdo-

main contains a certain number of carbon-black spheres which
is determined from a normal distribution.

3. CDA3: Carbon Black Spheres Distributed With a Gradient
of cells in the direction of the gradient is imposed for the remaining subdomains.
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Table 1
Diffusivities used in the model.

Diffusion coefficient Expression

DO2 –H2O

(
0.282

p

)
(T/298.2)1.5 cm2 s−1 [20]

DO2 –N2

(
0.220

p

)
(T/293.2)1.5 cm2 s−1 [20]

DH2O –n2

(
0.293

p

)
(T/308.1)1.5 cm2 s−1 [20]

DO2,Kn (4850d)(T/32)0.5 cm2 s−1 [21]

DH2O,Kn (4850d)
(

T/18
)0.5

cm2 s−1 [21]

DN2,Kn (4850d)
(

T/28
)0.5

cm2 s−1 [21]
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Table 2
Reaction parameters used in the model. Each parameter is taken from Ref. [24].

Reaction parameter Expression

i∗o 2.47 × 10−8 A cm−2
Pt

p∗
O2

101, 300 Pa

� 0.54
Erev

c 33 kJ mol−1

T* 353 K
˛c 1.0

cO∗
2

p∗
O2

RuT∗

� 	s − 	m

Table 3
Curve-fit coefficients for membrane conductivity and saturation pressure
expressions.

Coefficient Value Coefficient Value

c1 2.8133 × 10−4 p1 −2846.4
c2 1.328355 p2 411.24
c3 −1.1642 × 10−2 p3 −10.554
c 3.442175 × 10−5 p 0.16636
DO2,m (0.1543(T − 273) − 1.65) cm2 s−1 [22]

DH2O,m 0.265a2exp(− 3343/T) cm2 s−1 [23]

.2. Governing equations

Heat transfer, mass transfer and electrochemical reactions are
onsidered in the computational model for the catalyst layer. Water
s assumed to exist only in the vapor phase. A uniform pres-
ure of 2 atm is assumed for air in the cathode. In the pores,
he Stefan–Maxwell equations are solved to compute the oxygen
nd water vapor diffusive fluxes. The Stefan–Maxwell equations
assuming the presence of oxygen, nitrogen and water vapor) which
nclude Knudsen diffusion are given in the cathode catalyst layer as

yO2 = RuT

p

(
yO2 �H2O,d − yH2O�O2,d

DO2−H2O
+ yO2 �N2,d − yH2O�O2,d

DO2−N2

− �O2,d

DO2,Kn

)
(4)

yH2O = RuT

p

(
yH2O�N2,d − yN2 �H2O,d

DH2O−N2

+ yH2O�O2,d − yO2 �H2O,d

DH2O−O2

− �H2O,d

DH2O,Kn

)
(5)

yN2 = RuT

p

(
yN2 �O2,d − yO2 �N2,d

DO2−N2

+ yN2 �H2O,d − yH2O�N2,d

DH2O−N2

− �N2,d

DN2,Kn

)
(6)

Although the governing equation for nitrogen is not solved in
his model, the nitrogen mole fraction and gradient of the nitrogen

ole fraction can be easily deduced from

N2 = 1 − yO2 − yH2O (7)

∇yN2 = −∇yO2 − ∇yH2O − cO2 + cH2O + cN2

pRu
∇T

= −∇yO2 − ∇yH2O − 1
T

∇T

In the ionomer region, binary diffusion is assumed and thus the
ater vapor and oxygen diffusive fluxes in the ionomer region is

omputed as

H2O,d = −DH2O,m∇cH2O (8)

O2,d = −DO2,m∇cO2 (9)

As the Knudsen diffusivity is proportional to the pore diameter,
he pore diameter for each cell is computed as an average of 13
ifferent lengths in different directions. The diffusivities used in
his model are computed according to the expressions in Table 1.

Oxygen reacts with protons and electrons at the platinum reac-
ion sites to produce water vapor. The oxygen and water vapor
eaction fluxes are computed using Tafel kinetics as

O2,reac = 1Pt

[
1

4F
i0exp

(−˛cF

RT
�
)]

, (10)

H2O,reac = −1Pt

[
1

2F
i0exp

(−˛cF

RT
�
)]

. (11)

The exchange current density is computed according to experi-

ental data [24] as

o = i∗o

(
pO2

p∗
O2

)�

exp
[−Erev

c

RT

(
1 − T

T∗

)]
(12)
4 4

c5 −3.33815 × 10−8

c6 −7.2939 × 10−4

The parameters for the exchange current density and the reac-
tion rate are given in Table 2.

Protons are conducted through the ionomer while electrons are
conducted through the carbon-black spheres. The conductive fluxes
are computed as

�p,cond = −�m∇	m, (13)

�e,cond = �s∇	s. (14)

The conductivity of the carbon-black particles is taken to be
10 S cm−1 [25], while the conductivity of the membrane is taken
from a curve-fit of experimental data for recast Nafion [26] and is
computed as

�m(S cm−1) = c1exp
([

c2T − c3T2 + c4T3 − c5T4
]

a
)

+ c6, (15)

where the curve-fitting parameters are given in Table 3. The relative
humidity is computed as

a = cH2ORT

psat
, (16)

while the saturation pressure is computed as

psat (Pa) = p1 + p2(T − 273) − p3(T − 273)2 + p4(T − 273)3, (17)

where the curve-fitting parameters are given in Table 3.
Water molecules are dragged by protons due to electro-osmotic

drag, producing a flux which is expressed as:

�H2O,eod = −nd�m∇	m

F
, (18)

where the drag coefficient is taken to be 1 [27]. Protons and elec-
trons are consumed and the reactive flux is expressed as

�e,reac = �p,reac = 1Pt

[
i0

cO2

cO2,ref
exp

(−˛cF

RT
�
)]

. (19)

Heat transfer occurs in the catalyst layer through conduction,
and this flux is expressed as

�T,cond = −k∇T, (20)
where the thermal conductivities for each material are given in
Table 4. The thermal conductivities for ionomer and air as a function
of relative humidity and temperature are computed using curve fits
of data for temperatures between 343 and 353 K.
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Table 4
Temperature parameters used in the model.

Parameter Expression

ks W cm−1 K 3.75 × 10−3 [28]
km W cm−1 K exp(0.6373a)(− 0.00035694(T − 273) + 0.00165199) [29]
kair W cm−1 K (− 0.099489a + 2.0) × (0.022423(T − 273) + 13.27) × 10−5 [30]
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Table 6
Volume fractions used for each case.

M1 M2 M3 M4 M5 M6
� kJ mol−1 K T
�Sh
4F

Sh J (mol−1 K) 326.6 [31]

Ohmic heating takes place due to proton and electron conduc-
ion and is computed as

T,ohm = (∇	s)
2

�s
+ (∇	m)2

�m
. (21)

Finally, heat is produced via the oxygen reduction reaction and
his is computed as

T,reac = −1Pt∇ ·
[

i0
cO2

cO2,ref
exp

(−˛cF

RT
�
)]

(� + �) , (22)

here the Peltier coefficient is listed in Table 4.
Thus, the governing equations can be expressed as a combina-

ion of different fluxes and sources terms as

· (�O2,d + �O2,reac) = 0 (23)

· (�H2O,d + �H2O,eod + �H2O,reac) = 0 (24)

· (�p,cond + �p,reac) = 0 (25)

· (�e,cond + �e,reac) = 0 (26)

· (�T,cond) = ST,ohm + ST,reac (27)

.3. Boundary conditions

In the three-dimensional domain, Dirichlet boundary conditions
re applied at two opposite faces of the cubic domain, while peri-
dic boundary conditions are imposed at the other four faces. A
mall temperature difference of 0.1 K between opposite boundaries
s imposed, while oxygen and water vapor concentrations differ by
.1 mol m−3 on opposite boundaries. The operating conditions cor-
espond to a relative humidity of 98%. The simulation considers
he case of high current densities, so that the overpotential at each
oundary are close to 0.4 V. The Dirichlet boundary conditions are

isted in Table 5.

.4. Discretization and solution procedure

The governing equations are discretized using the finite volume
ethod. The discretized system of coupled non-linear equations

s solved using an inexact Newton method. The Jacobian matrix is
ormed analytically while the generalized minimal residual method
GMRES) [32] in conjunction with a localized ILU preconditioner

33,11] and deflation [34]. The code is parallelized using the Mes-
age Passing Interface (MPI) library [35] and when it is run on 64
rocessors, takes between one and three hours for convergence for
400 nm × 400 nm × 400 nm domain.

able 5
imulation boundary conditions.

Variable Boundary 1 Boundary 2

cO2 10.1 10.0
cH2O 15.9 16.0
	m 1.7 1.708
	s 1.3 1.30018
T 353 353.1
�p 0.359 0.413 0.470 0.526 0.584 0.643
�i 0.330 0.304 0.276 0.247 0.218 0.187
�c 0.311 0.283 0.254 0.227 0.198 0.170

The effective transport parameters for the simulation are com-
puted in the following manner. The total flux for any given quantity
g (heat or species) can be represented by an effective transport
parameter Meff, the length of the solution domain l, and the spec-
ified values at opposite boundaries g1 and g2. Using this notation,
the total flux through the solution domain 
g is expressed as

�g = −Meff
(g2 − g1)

l
(28)

The specified boundary conditions and length of the domain are
known. The total flux through the domain 
g can be computed
from the simulation. Thus, the effective transport parameter can
be computed as

Meff = − �gl

(g2 − g1)
. (29)

The computation of the flux 
g is rather straightforward when
electrochemical reactions are not considered in the model. For this
case, the influx at one boundary must equal to the outflux at the
opposite boundary. However, when electrochemical reactions are
considered in the model, there is net production or consumption in
the domain, and the total influx and outflux values are not equal. It
was observed that the differences between the influx values when
electrochemical reactions are included and neglected are negligi-
ble. Thus the input fluxes are used for the computation of effective
transport properties in this work.

3. Results and discussion

Five randomly reconstructed 400 nm × 400 nm × 400 nm
microstructures were created for six different combinations of
pore volume fraction, ionomer volume fraction and carbon-black
volume fraction as shown in Table 6.

A number of different combinations of ionomer distribution and
carbon black distribution algorithms were investigated as shown in
Tables 8–10.

The effective transport properties were normalized by their bulk
counterparts to account for variations in operating conditions. In
this case, the effective oxygen diffusivities are normalized by the
binary diffusivity of oxygen in nitrogen at a temperature of 353 K
and a pressure of 2 atm. The effective water vapor diffusivities are
normalized by the binary diffusivity of water vapor in nitrogen at
the same conditions. The expressions for these binary diffusivities is
given in Table 1. The effective proton conductivity is normalized by
the bulk value which is computed at 353 K and a relative humidity
of 98%. These reference values are shown in Table 7.
3.1. Effects of changing ionomer distribution

In order to test the effects of changing ionomer distribution algo-
rithms, a set of microstructures was created using CDA0, and the

Table 7
Reference transport properties used for normalizing computational values.

Transport property Reference value

DO2,eff 1.45 × 10−1 cm2 s−1

DH2O,eff 1.89 × 10−1 cm2 s−1

�m,eff 6.378 × 10−2 S cm−1
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Table 8
Different algorithm combinations considered to investigate the effect of the ionomer
distribution algorithm. Each data set used the same placement for the carbon black
spheres and platinum particles. Only the ionomer distribution was changed.

Set CDA IDA ns � ∂i
∂z

1 0 0 1 0.0 0.0
2 0 1 1 0.0 0.0
3 0 2 64 0.0 0.0
4 0 3 64 0.2 0.0
5 0 4 8 0.0 0.2
6 0 4 8 0.0 0.4
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Fig. 6. Schematic showing diffusion paths for oxygen in microstructures with differ-
ig. 4. Comparison of computed effective oxygen diffusivities for IDA0, IDA1 and
xperimental data from [18,19].

arbon-black spheres remained fixed for each set. Thus, the only
hanges between the six sets of data shown in Table 8 were in the
istribution of the ionomer and pore cells.

.1.1. Uniform ionomer thickness (Set 1) versus random ionomer
llocation (Set 2)

The effective diffusivities of oxygen and water vapor were
educed when the ionomer cells were randomly allocated instead
f assuming a uniformly thick layer of ionomer cells, as shown
n Figs. 4 and 5. This is likely due to random arrangements of

onomer cells which could present a more significant barrier to dif-
usion than a uniformly thin layer of ionomer cells. Fig. 6 shows an
xample of how random ionomer configurations might increase
he tortuosity of gases which travel through the catalyst layer.
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ig. 5. Comparison of computed effective water vapor diffusivities for IDA0 and
DA1.
ent ionomer distributions. It is clear that the oxygen in the figure has a more tortuous
path to travel. (a) Uniform ionomer distribution and (b) nonuniform ionomer dis-
tribution.

Although the effective oxygen diffusivity curve is shifted closer to
the experimental results with IDA1 in Fig. 4, there is still significant
disagreement.

Fig. 7 shows that the effective proton conductivity is reduced
by around 10% when going from a uniformly thin ionomer layer to
randomly allocated ionomer cells. This is due to the fact that the
ionomer cells are much more likely to be connected in IDA0 with
protons traveling around the carbon-black spheres. The protons
likely face a more tortuous path with IDA1. The effective thermal
conductivity values are, on the other hand, virtually identical and
showed a quasi linear decrease with increasing porosity.

Fig. 8 shows the total oxygen consumption as a function of
porosity. Less oxygen is consumed for IDA1 than for IDA0 and this is
likely because for IDA0, every platinum site exists at the interface of
a carbon-black and ionomer cell. For IDA1, the carbon-black spheres
are not uniformly covered with ionomer cells and thus, some plat-
inum sites exist which are inaccessible to protons. The reason that
the total consumption of oxygen decreases with porosity is that
at higher porosities, there is a higher percentage of disconnected
“dead” carbon black cells which electrons have no way of traveling
through, which result in a large number of electrochemically inac-
tive platinum particles. The existence of dead carbon-black cells
also accounts for the outlying values in Fig. 8.
3.1.2. Uniform (Set 2) and normal (Set 3) ionomer distribution
When IDA2 (Set 3) and IDA3 were used (Set 4), the computed

effective transport properties and oxygen consumption values
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Fig. 7. Comparison of computed effective proton conductivities for IDA0 and IDA1.
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Fig. 10. Comparison of computed effective proton conductivities for IDA1 and IDA4.
Implementing an ionomer gradient slightly reduces the effective proton conductiv-
ities.

Table 9
Sets considered for different carbon-black distributions.

Set CDA IDA ns � ∂c
∂z

7 1 1 64 0.0 0.0
8 2 1 64 0.2 0.0

in the results due to the fact that the number of active carbon-
black cells varies greatly from case to case depending on the
connectivity between the carbon-black particles. However, Set 7
ig. 8. Comparison of computed total consumption of oxygen for IDA0 and IDA1.

ere not significantly different from the results computed using
DA1.

.1.3. Ionomer gradient (Set 4 and Set 5)
Fig. 9 shows a comparison of the effective oxygen diffusivi-

ies obtained from IDA1 with those obtained from IDA4 with an
onomer gradient of 40% imposed over 8 subdomains. There are not
ignificant differences in the results, except at low porosities, where
he effective oxygen diffusivity decreases when implementing an
onomer gradient in the solution domain. This is likely because with
ow porosity geometries, it is more likely that the ionomer will
ccumulate enough in a given subdomain such that it fills many
ores and presents a significant impediment to oxygen diffusion.
he same effects were observed for the computed values of the
ffective diffusivity of water vapor.

The proton conductivity decreases slightly when an ionomer
radient is implemented in the domain, as shown in Fig. 10. This
s likely due to the fact that concentrating the ionomer cells in any
ubdomain means that the distribution across the domain is not
ven. Thus, in some subdomains, the pathways for proton trans-
ort will be limited by a decreased number of ionomer cells. The

ffective thermal conductivity and total oxygen consumption did
ot change significantly for these sets.
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ig. 9. Comparison of computed effective oxygen diffusivities for IDA1, IDA4 and
xperimental data from [18,19].
9 3 1 8 0.0 0.2
10 3 1 8 0.0 0.4
11 3 1 8 0.0 -0.4

3.2. Effects of changing the carbon black distribution

In order to test the effects of changing carbon black distribution
algorithms, a set of microstructures was created using IDA0. Four
different sets of data were run as shown in Table 9.

3.2.1. Uniform (Set 7) and normal (Set 8) carbon black
distribution

The computed effective electron conductivities for Sets 1, 7,
and 8 are shown in Fig. 11. There is a large degree of variance
and Set 8 display much lower effective electron conductivities at
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Fig. 11. Comparison of computed effective electron conductivities for IDA1 and
CDA0, CDA1, and CDA2. Although there is a large amount of variance in the data,
at low carbon-black volume fractions, Sets 7 and 8 have lower effective electron
conductivity values than Set 2.
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Fig. 14. Comparison of computed oxygen consumption for IDA1, CDA0 and CDA3
for different carbon black gradients. At low porosities, Sets 10 and 11 have slightly
more oxygen consumption than Set 2.

Table 10
Sets considered for different carbon-black and ionomer distributions.

Set CDA IDA ns
∂c
∂z

∂i
∂z
ig. 12. Comparison of computed oxygen consumption for IDA1 and CDA0, CDA1,
nd CDA2. Although there is a large amount of variance in the data, at low porosities,
ets 7 and 8 have less oxygen consumption than Set 2.

ow carbon-black volume fractions. This is likely due to the fact
hat in ensuring a normal or uniform distribution throughout the
omputational domain results in a large number of disconnected
arbon-black particles, whereas allowing the carbon-black parti-
les to be placed without any spatial restrictions results in more
arbon-black particles being connected. This also manifests as a
rop in the total oxygen consumption since fewer platinum parti-
les are active, as shown in Fig. 12. There was no observable change
n the effective proton conductivity, effective oxygen diffusivity or
ffective thermal conductivity values for Set 2, Set 7, and Set 8.

.2.2. Carbon black gradient (Sets 9–11)
The computed effective electron conductivities for Sets 2, 10,

nd 11 are shown in Fig. 13. Imposing a gradient of carbon-black
articles across the domain in the direction of electron conduc-
ion results in higher effective electron conductivity values at high
arbon-black volume fractions (low porosities). When the carbon-
lack gradient is imposed in the opposite direction, this increase in
he effective electron conductivity is not seen. As shown in Fig. 14,

he total amount of oxygen consumption is only slightly higher in
et 10 than in Set 2, while the oxygen consumption for Set 11 is sim-
lar to Set 2. This indicates that the increase in effective electron
onductivity is not solely due to the fact that more carbon-black
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ig. 13. Comparison of computed effective electron conductivities for CDA0 and
DA3 with different carbon black gradients. At low porosities and high carbon-black
olume fractions, the effective electron conductivity is higher in Set 10, than Set 2
nd Set 11.
12 3 4 8 0.4 0.4
13 3 4 8 -0.4 0.4

particles are active. This indicates that the average electron path
length for Set 10 is lower than the path lengths in Set 2 and Set 11.

In all likelihood, this anomaly is probably due to the details
of the reconstruction algorithms. When a carbon-black gradient
is imposed through the domain, each subdomain (sliced in the
x–y plane) is allocated a certain number of carbon-black spheres.
Starting at one end of the computational mesh, each subdomain is
randomly filled with carbon-black particles before moving to the
next subdomain. Due to the details of the reconstruction algorithm,
when a positive carbon-black gradient is used, the first subdomain
that is filled has the smallest number of carbon-black spheres in
the domain, while when a negative carbon-black gradient is used,
the first subdomain that is filled has the largest number of carbon-
black spheres in the domain. Starting with the subdomain with
the smallest number of carbon-black spheres apparently serves to
reduce the path length for the carbon-black particles.

There was no observable change in the effective proton conduc-
tivity, effective oxygen diffusivity, or effective thermal conductivity
values for Set 2, Set 9, Set 10, and Set 11.

3.3. Effects of changing both carbon black and ionomer
distributions

The idea that was tested was to see whether better performance
was obtained by orienting the carbon black and ionomer gradients
in the same direction or in opposite directions. Table 10 shows two
different data sets that were compared.

Fig. 15 compares the effective oxygen diffusivitivies for Set
12, Set 13 and Set 2. Set 12, when the ionomer and carbon
black gradients are implemented in the same direction, results
in lower effective oxygen diffusivities at low porosities. The
effective oxygen diffusivities for Set 13 are similar to Set 2.
This is likely due to the fact that with Set 12, one end of the

computational domain has a higher percentage of both ionomer
and carbon-black than the opposite end. This creates a significant
barrier to oxygen diffusion at one end of the domain, especially
when the porosity is low. Set 13 has a high concentration of
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Table 11
Summary of model results for effective transport parameters.

Transport parameter High values Low values

DO2,eff Uniform I coverage Nonuniform I coverage
High CB and I gradients

�m,eff Uniform I coverage High I gradient
Nonuniform I coverage

�s,eff CB gradient Uniform distribution of CB
ig. 15. Comparison of computed effective oxygen diffusivities with IDA4 and CDA3.
t is clear that at low porosities, Set 12 results in lower effective diffusivity values.

arbon-black at one end of the computational domain, and a high
oncentration of ionomer at the other end of the computational
omain. Over the length of the domain, the distribution is quite
ven, and there is not a significant barrier to oxygen diffusion that
s created.

Fig. 16 compares the total oxygen consumption for Set 12, Set
3 and Set 2. Set 12 results in higher values of oxygen consumption
t low porosities than both Set 13 and Set 2. At high porosities, it
s difficult to compare because there is such a large variance in
he results. There was very little change in the effective proton
onductivities computed in Case 12 and 13.

. Further discussion: Knudsen diffusion revisited

The results show that the assumptions used in a catalyst
ayer reconstruction algorithm can affect the computed effective
ransport properties. The most significant differences for effective
ransport properties computed using different carbon black and
onomer allocation algorithms are displayed in Table 11. It is impor-
ant that PEM fuel cell catalyst layer modelers consider the impact
f the assumptions used in the catalyst layer reconstruction algo-

ithm.

Unfortunately, even though different reconstruction algorithms
roduced different results for the effective transport parameters,
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ig. 16. Comparison of computed total oxygen consumption with IDA4 and CDA3.
lthough the values are similar, Set 12 has higher consumption values, especially at

ower porosities.
Normal distribution of CB

there are still significant discrepancies between computed and
experimental data, as demonstrated in Fig. 4. This leads one to more
critically examine the underlying assumptions for Knudsen diffu-
sion in the catalyst layer. The theory for Knudsen diffusion is based
on gas flow through a cylindrical capillary, as shown in Fig. 17. Based
on the diameter of the capillary, the Knudsen diffusion is typically
calculated as

DKn = 〈d〉〈v〉
3

= 4850〈d〉
√

T

MW
, (30)

where v is the mean molecular velocity. However, the porous
microstructure inside of PEMFC catalyst layers can hardly be
described as a collection of capillaries. There has been a significant
amount of work done to determine an appropriate expression for
Knudsen diffusion in pores created by packed hard spheres [36–38],
which was pioneered by Derjaguin [39]. In this case, the expression
for Knudsen diffusion is

DKn = 〈d〉〈v〉
3

[
〈d2〉

2〈d〉2
− ˇ

]
, (31)

where the first correction term accounts for arbitrarily shaped
pores and the second correction term accounts for the nature of
redirecting collisions from the wall as

ˇ =
∞∑

m=1

〈cos�m〉, (32)

where 〈cos�m〉 is the average cosine of the angles between trajec-
tory segments separated by m wall collisions. The value of ˇ was
shown by Derjaguin to be 0.3077 for uniform streams of molecules
striking randomly packed hard spheres [39].

The morphology of the interior of a PEM fuel cell catalyst layer
is much more similar to a collection of packed, randomly placed
spheres than to a capillary. When the corrected Knudsen diffu-
sion relationship is used in the simulations, the oxygen diffusivity
results are much closer to experimental data, as shown in Fig. 18.
Nonetheless, there are still significant differences between the
results.

The observed differences between experimental and computa-
tional results may be due to the fact that the pore space of the
catalyst layer is not a collection of spheres and more impediments
to oxygen diffusion may exist in the pore space. This could affect
the value of ˇ used in the model. Additionally, a very small sec-

tion of a catalyst layer is used to compute the effective transport
properties, and it may be necessary to simulate a larger sec-
tion to get more accurate results. Furthermore, it is difficult to
make comparisons to experimental catalyst layer measurements,

Fig. 17. Schematic of a molecule undergoing Knudsen diffusion in a capillary.
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Fig. 18. Comparison of computed effective oxygen diffusivities with and without
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erjaguin approximation with experimental data from [18,19].

hen the catalyst layer is only characterized by a single param-
ter: the porosity. Perhaps better agreement might be obtained
f more information was provided concerning the ionomer vol-
me fraction, carbon-black volume fraction, pore size distribution,
arbon-black particle size distribution, and the method of fabri-
ation. It is likely that the largest source of error comes from the
ssumptions used in the reconstruction algorithm. Although dif-
erent constraints were applied for the different cases, a stochastic
pproach to reconstruction is taken for all cases. This assumption
ay be appropriate for some catalyst layers which are fabricated

sing a given technique, but may be inappropriate for catalyst
ayers fabricated using other techniques which produce more struc-
ured or anisotropic microstructures. This could explain why there
ppears to be better agreement with the NRC experimental data,
hile there are significant differences with the GM experimental
ata. Finally, none of the experimental data provided error bars,
hich makes it even more difficult to compare to computational
ata.

Fig. 19 shows a comparison between the effective transport
roperties computed from Set 2 with those computed by two other
roups. Kim and Pitsch used a simulated annealing approach with

onnected carbon-black spheres uniformly covered by ionomer
similar to IDA0/CDA0) to computationally reconstruct a catalyst
ayer section based on pore size distribution data. They used a
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ig. 19. Comparison of computed effective oxygen diffusivities with other compu-
ational models.
ources 208 (2012) 354–365

constant prescribed Knudsen number to determine the effects of
Knudsen diffusion. In each case, their effective diffusivity results
are higher than the results obtained using the Derjaguin correction,
although their values are much closer at higher Knudsen numbers.
However, it is difficult to evaluate the accuracy of any model where
the Knudsen diffusion is used as a tunable parameter of sorts, as
opposed to being derived from the description of the pore space.
Siddique et. al. modeled the formation of agglomerates through
a statistical algorithm but computed the Knudsen diffusion based
on the local pore diameter. Their results are slightly larger than
those obtained using the Derjaguin correction. However, several
points should be noted in this case. First, their sample sizes were
extremely small (100 nm × 100 nm × 200 nm) compared to those
used in this work (400 nm × 400 nm × 400 nm). Second, their recon-
struction algorithm differed in that the carbon-black particles were
not prescribed to be spherical, but were “grown” from seed cells,
allowing for nonspherical particles. The ionomer distribution was
also done in a different way as it was grown from seed cells, as
opposed to being allowed to attach itself to any point on the sur-
face of the carbon-black particle. A future topic of research will be to
do more rigorous comparisons of the results from this reconstruc-
tion algorithm along with results computed from coarse grained
molecular dynamics simulations and from catalyst layer sections
reconstructed from SEM data.

The best performance, as determined by the amount of total
oxygen consumption, was generated in catalyst layer sections with
uniform ionomer coverage of the carbon black spheres and for the
cases where a gradient of the carbon-black particles was imposed
in the domain. Uniform ionomer coverage of the carbon-black
spheres ensures a high number of active platinum particles, while
it is unclear as to why imposing a gradient of carbon-black par-
ticles would increase the total amount of oxygen consumption in
the domain. As larger domains are considered and this model is
upscaled to account for an entire catalyst layer, more definitive
conclusions might be obtained.

5. Conclusions

A number of different algorithms for computationally recon-
structing a PEMFC catalyst layer microstructure are implemented
and the resulting transport parameters and performance values
are compared. Significant differences are seen when one assumes
that the ionomer uniformly covers the carbon-black particles as
opposed to the case where the ionomer randomly agglomerates
throughout the domain. Computed values are compared with
experimental data for the effective oxygen diffusivity through
a PEMFC catalyst layer. Much better agreement between com-
putational and experimental results is obtained when a model
for Knudsen diffusion is implemented which accounts for dif-
fusion through noncylindrical pores. The best performance for
the catalyst layer section was achieved when the ionomer uni-
formly covered the surface of the carbon-black spheres and when
a gradient of carbon-black particles was imposed across the
domain.

There are a number of assumptions that have been used in this
model. The effects of compression pressure have not been con-
sidered, and water is only assumed to exist in the vapor phase.
Future work will focus on including the effects of two-phase flow,
phase changes, and morphological microstructural changes due to
compression pressure. Additionally, the results from the microscale
model will be upscaled in such a way that the entire catalyst layer

can be simulated. This will not only allow reliable determination
of effective transport parameters, but also the use of systematic
comparisons of results from a variety of different microstructures
to guide optimum catalyst layer design.
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